Multiple Mechanisms Contribute to Osmotic Inducibility of proU
نویسندگان
چکیده
Transcription of the proU operon in Escherichia coli is induced several hundredfold upon growth of cells in media of elevated osmolarity. A low-copy-number promoter-cloning plasmid vector, with lacZ as the reporter gene, was used for assaying the osmoresponsive promoter activity of each of various lengths of proU DNA, generated by cloning of discrete restriction fragments and by an exonuclease III-mediated deletion approach. The results indicate that expression of proU in E. coli is directed from two promoters, one (P2) characterized earlier by other workers with the start site of transcription 60 nucleotides upstream of the initiation codon of the first structural gene (proV), and the other (P1) situated 250 nucleotides upstream of proV. Furthermore, a region of DNA within proV was shown to be involved in negative regulation of proU transcription; phage Mu dII1681-generated lac fusions in the early region ofproV also exhibited partial derepression ofproU regulation, in comparison with fusions further downstream in the operon. Sequences around promoter P1, sequences around P2, and the promoter-downstream negative regulatory element, respectively, conferred approximately 5-, 8-, and 25-fold osmoresponsivity on proU expression. Within the region genetically defined to encode the negative regulatory element, there is a 116-nucleotide stretch that is absolutely conserved between the proU operons of E. coli and Salmonella typhimurium and has the capability of exhibiting alternative secondary structure. Insertion of this region of DNA into each of two different plasmid vectors was associated with a marked reduction in the mean topological linking number in plasmid molecules isolated from cultures grown in high-osmolarity medium. We propose that this region of DNA undergoes reversible transition to an underwound DNA conformation under high-osmolarity growth conditions and that this transition mediates its regulatory effect on proU expression.
منابع مشابه
Role of proP and proU in betaine uptake by Yersinia enterocolitica under cold and osmotic stress conditions.
Yersinia enterocolitica is a food-borne pathogen with the ability to grow at cold temperatures and tolerate high osmolarity. The bacterium tolerates osmotic stress by intracellular accumulation of osmolytes, such as betaine. The proP gene and proU operon of Y. enterocolitica were sequenced, and single (ProP(-) ProU(+) and ProP(+) ProU(-)) and double (ProP(-) ProU(-)) mutants were generated. Upo...
متن کاملIn vitro reconstitution of osmoregulated expression of proU of Escherichia coli.
Osmoregulated expression of proU has been reconstituted in a cell-free system. proU encodes an osmotically inducible, high-affinity transport system for the osmoprotectant glycine betaine in Escherichia coli. Previously, a proU-lacZ fusion gene had been cloned, resulting in plasmid pOS3. In vivo osmoregulation of this extrachromosomal proU-lacZ fusion gene at low copy number showed that the pla...
متن کاملRNase III initiates rapid degradation of proU mRNA upon hypo-osmotic stress in Escherichia coli.
Hyper-osmotic stress strongly induces expression of the Escherichia coli proU operon encoding a high affinity uptake system for the osmoprotectants glycine betaine and proline betaine. Osmoregulation of proU takes place at the transcriptional level by upregulation of the promoter at high osmolarity and repression of transcription by the nucleoid-associated protein H-NS at low osmolarity. In the...
متن کاملConstruction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat.
We constructed and characterized a transcriptional fusion that measures the availability of water to a bacterial cell. This fusion between the proU promoter from Escherichia coli and the reporter gene gfp was introduced into strains of E. coli, Pantoea agglomerans, and Pseudomonas syringae. The proU-gfp fusion in these bacterial biosensor strains responded in a quantitative manner to water depr...
متن کاملThe osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of RpoS, ProP, ProU and other systems.
Trehalose synthesis (RpoS-dependent) and betaine uptake mediated by transporters ProP and ProU contribute to the osmotolerance of Escherichia coli K-12. Pyelonephritis isolates CFT073 and HU734 were similar and diminished in osmotolerance, respectively, compared to E. coli K-12. The roles of RpoS, ProP and ProU in osmoregulation and urovirulence were assessed for these isolates. Strain HU734 ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005